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Numerical simulation of helical magnetohydrodynamic 
turbulence 
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(Received 19 April 1976 and in revised form 23 May 1977) 

The three-dimensional incompressible magnetohydrodynamic (MHD) equations for 
rectangular geometry and periodic boundary conditions are solved numerically using 
the spectral method of Orszag & Patterson (1972). The calculations are restricted to 
a magnetic Prandtl number of one and to Gaussian random initial conditions with 
zero mean magnetic and momentum fields. We permit non-mirror-symmetric (helical) 
flows. I n  all cases, there is a continuous transfer of energy from the momentum field 
to  the magnetic field. A proposed mechanism for this transfer involves the cascading of 
energy from the large scales of the momentum field to  the small scales, thence a re- 
distribution of energy between the momentum and magnetic fields by Alfv6n waves, 
and, finally, an inverse cascade of energy from the small scales of the magnetic field to 
the large scales. This inverse cascade is found when magnetic helicity ((a. b), where 
b = curl a is the magnetic induction) is present in the flow. 

1. Introduction 
I n  this paper, we present the results of a numerical simulation of homogeneous MHD 

turbulence. These flows are three-dimensional, incompressible, isotropic, and include 
non-mirror-symmetric (helical) realizations. For the sake of simplicity in analysing 
the results, no forcing terms were included in the calculations reported in this paper. 
Since both the kinetic and the magnetic energy eventually disappears through dissipa- 
tive processes, no steady state can be reached. Reynolds numbers attained in these 
direct numerical simulations were restricted to  moderate values because of limited 
available computing power. However, overall features of the dynamics of MHD 
turbulence can be demonstrated, in particular the mechanisms for transforming 
kinetic into magnetic energy. These mechanisms include equipartition in the small 
scales, and the amplification of large-scale magnetic energy when magnetic helicity is 
initially present in the flow. 

These studies are motivated by the magnetic-dynamo problem, in which a mechan- 
ism is sought whereby a momentum field can sustain a large-scale magnetic field. 
Since the extension of these numerical simulations to non-rectangular geometries 
and to  rotating frames of reference is difficult, we cannot explicitly simulate a magnetic 
dynamo. Forcing terms can be added to  the momentum equation, but they are neces- 
sarily artificial, and it is important to  understand the unforced case first. The addition 
of forcing does permit a calculation to proceed for times long compared with the Ohmic 
dissipation times of the large scales in the flow. Forcing studies are in progress and will 

t Permanent address: Observatoire de Nice, Nice, France 06300. 
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be reported on in another paper. Nevertheless, significant insight into the energy 
transfer mechanisms can be obtained from decaying turbulent flows and by using 
initial random fields with non-mirror-symmetric statistical properties to mimic the 
effects of rotation. These energy transfer mechanisms are of inteIest in gaining insight 
into the magnetic-dynamo problem as well as into other turbulent MHD flows. 

Numerical calculations of the full MHD equations have not been carried out. 
Thomas (1968) made a numerical integration of a one-dimensional model of the MHD 
equations (analogous to Burgers’ equation). Moss (1970) did a kinematic two- 
dimensional calculation. Bullard & Gellman (1954) opened the way to three-dimen- 
sional calculations by taking a conducting sphere and expanding both the velocity 
and the magnetic field in spherical harmonics. Their calculations were kinematic 
(fluid velocity specified) and there were questions of convergence as additional har- 
monics were included. Jepps (1975) has recently carried out a kinematic calculation 
of a modified magnetic induction equation in a sphere. The nonlinear problem has been 
attempted (Stevenson & Wolfson 1966; Kropachev 1971 a, b ) .  Gubbins (summarized 
in Gubbins 1974) has recently extended Bullard & Gellman’s method. He integrates 
the induction equation together with the equation of motion, neglecting the inertial 
term but keeping the Lorentz force. Schumann (1975) has done direct numerical simu- 
lations of a very large magnetic Prandtl number turbulent flow with the Lorentz force 
represented by a linear functional of the momentum field and using a modified Orszag- 
Patterson (1 972) code. 

Besides these numerical studies, the fully nonlinear turbulent MHD equations 
have been studied theoretically over the past several years, and this has led to the 
introduction of some important ideas. They are summarized in the following section. 

2. The turbulent MHD equations 
When the displacement current in Maxwell’s equations is neglected (non-relativistic 

case), the MHD equations for an incompressible fluid may be written in the following 
form : 

au/at - vV2u = (u x w) + (j x b) - V P ,  
ab/at - hV2b = curl (u x b), 

( 1  4 
(1 b )  

P = p/p+&l.u,  (1 c) 

o = curlu, j = curlb (1d,e)  

and divu = divb = 0, ( I f )  
where u = u(x, t )  is the velocity field and b = b(x, t )  is the magnetic induction field 
normalized by (ppo)4. w is the vorticity field, j the normalized electric current and P the 
normalized pressure. The physical parameters are the density p, the permeability p,,, 
the kinematic viscosity v and the magnetic diffusivity h = l /up,,  with u the electrical 
conductivity. 

No forcing terms are included and (1 a-f) refer to a non-rotating frame of reference. 
For these experiments, the magnetic Prandtl number Pr,, = v / h  was taken to be 
equal to 1. Boundary conditions were periodic on a cube of side L (this represents a flow 
in an infinite domain with maximum resolvable scale L). Initial conditions were random 
with Gaussian statistics and are described further in the appendix. 
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In  the absence of a magnetic field, kinetic energy is transferred from the larger scales 
of the flow to the smaller dissipative scalesvia what appears to be a complicated cascade 
process. The term ‘cascade’ refers to transfer across a range of scales where inter- 
actions are repeated between progressively smaller scales of motion. In  the presence of 
a magnetic field, this cascade process appears to continue to occur with additional 
energy transfer from small scales of the velocity field to small scales of the magnetic 
field through the action of AlfvBn waves. These waves (Roberts 1967) are non- 
dispersive, transverse and act to partition energy between the momentum and 
magnetic fields with a characteristic time l / kE&,  where k is the wavenumber and 
EAf the total magnetic energy. Because of the k dependence, this energy equipartition 
is more effective a t  the smaller scales (large k) of the motion. 

Together with energy transfer into the smaller scales of the magnetic field by Alfvth 
waves, it is thought that an inverse transfer will persistently shift energy into the 
larger scales (see, for example, LBorat 1975). These scales have relatively long charac- 
teristic times. By this circuitous process, the magnetic field may be supported by the 
momentum field. 

The concept of an inverse cascade of energy is well established from studies of two- 
dimensional turbulence. The presence of two quadratic invariants of motion (in the 
absence of viscosity), kinetic energy and squared vorticity, constrains the motion 
sufficiently so that the normal cascade process is reversed. I n  MHD turbulence, this 
inverse cascade appears to be related to non-mirror-symmetric flows. Kinetic helicity 
((u . o), angle brackets denoting a volume average over the cube) can be non-zero in 
isotropic turbulence if the requirement for mirror symmetry is relaxed. Moreover, in 
the absence of a magnetic field, it is an invariant of the inviscid motion. 

The presence of kinetic helicity is important in Steenbeck, Krause & Rgdler’s 
(1966) explanation of a means of generating a turbulent magnetic field (the a-effect). 
Briefly, 

(U b)small adb),mge 9 (2) 
scales scales 

where ay = - 47(u. o) and 7 is an Eulerian integral time scale. 
Moffatt ( 1 9 7 0 ~ )  has proposed a similar mechanism, but with a, a more general 

functional of the helicity. I n  both these studies, contrary to the present one, the 
magnetic field is inhomogeneous. But it is felt that the a-effect is also applicable to 
homogeneous fields. The source of kinetic helicity is not well established, but pre- 
sumably it may come from either a rotation effect or from density gradients, or both. 
A mechanism that will impart a right-handedness or left-handedness to the flow will 
sufice. 

The linearizations done by Steenbeck et al. and Moffatt lead to an exponential 
growth of the magnetic field. This process is halted by the Lorentz force j x b acting 
on the momentum field. The saturation mechanism is often thought to  be an enhanced 
Ohmic dissipation (Weiss 1966; Moffatt 1970b, 1972; Malkus & Proctor 1975). In  the 
last paper, for example, it is assumed that the characteristic time of the problem is the 
Ohmic decay time l/Ak2, and that the Lorentz force induces a large-scale velocity field 
which, in turn, bends the magnetic field lines, hence creating small scales in the mag- 
netic field which will be readily dissipated. Moffatt envisages that the velocity field, 
which is the source of the magnetic field, is dissipated and he is able to show explicitly 
how the a-effect may be diminished by the introduction of the Lorentz force. Indeed, 

11-2 
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an expression of the form a = av - has been suggested by several authors as a means 
of saturating the magnetic field (Rudiger 1973; Vainshtein & Zeldovich 1972; Vain- 
shtein & Vainshtein 1973; Stix 1972; Malkus & Proctor 1975). Vainshtein (1974) was 
interested in the contribution of the Lorentz force to the creation of kinetic helicity. 
By assuming a form of the correlation tensor of the velocity field depending upon the 
magnetic field, and by assuming further a weak-field regime, he was able to show that 
the contribution of the Lorentz force is proportional to 

aAll r - 37@. j) (3) 

and that it acts in an opposite manner to the kinetic helicity. Therefore, the total 
growth factor a = uv - a, of the magnetic field is reduced. However, this analysis is 
restricted to weak fields, so that the magnetic energy remains smaller at all times than 
the kinetic energy. 

Homogeneous incompressible turbulent flows have been productively studied using 
stochastic models and some closure approximation (Leslie 1973j.t These models have 
been checked against experiments (Herring 1973) and against numerical simulations 
in two and three dimensions (Herring et al. 1974; Orszag & Patterson 1972). Such 
models exist for MHD turbulence (Kraichnan 1958) and studies have been made of 
realizable, incompressible, isotropic and homogeneous conducting flows (Kraichnan & 
Nagarajan 1967; Nagarajan 1971). Also, turbulence which is isotropic but not mirror 
symmetric has been investigated recently (Kraichnan 1973; Patterson 1973; LBorat 
1975; Pouquet, Frisch & LBorat 1976). LBorat shows that the fluctuating magnetic 
energy grows when there is some residual helicity (u. w) - (b.  j) available in the 
smaller scales. As the Alfv6n waves reduce the value of the residual helicity in time, 
this provides an equilibration mechanism, although the ultimate fate of the magnetic 
energy is not, clear (Pouquet et al. 1976). 

3. Direct spectral simulations of the MHD equations 

field (for example) may be expanded in a Fourier series 
With periodic boundary conditions at  the surfaces of a cube of side L, the velocity 

u(x, t )  = C Q(k, t )  exp (ik.x),  
all k 

(4) 

where k = (2n/L) n with - aN < ni < 4N (i = 1,2,3) ,  the ni being integers and N 3  
(=  323) the number of points treated in real space. Defining the fields 

S = U X O + ~ X ~ ,  Z = U X ~  (5) 

and substitmuting (4) and equivalent expansions into (l) ,  we arrive at  

dO(k, t ) / d t  + Vk20(k, t )  = - k2{k x [k x 9(k, t ) ] } ,  (6 a)  

(6 6 )  

& = i ( k x C ) ,  5 = i ( k ~ b ) ,  k . O = k . b = O .  (6% d, e )  

&(k, t),/dt +hk2h(k, t )  = i[k x &(k, t ) ] ,  
h 4 

t The quadratic nonlinearity of the Navier-Stokes equations implies that the equation for 
the mean value of the velocity field depends upon second-order moments, which in turn are 
a function of third-order moments, etc. Therefore the set of equations for the moments of the 
velocity field is not closed and an additional hypothesis is necessary to give a finite system. 
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The pressure term has been removed by twice taking the curl of tke momentum equa- 
tion. B and 2 are computed in real space after transforming 0, Q, b and J^ from k space 
to real space [equation (5)] ,  and then it is possible to step forward by means of (6). The 
time-differencing scheme used is a ‘leapfrog’ scheme with the linear terms handled 
implicitly. 

The code used is a modification of that first described by Orzsag & Patterson (1972) 
for the integration of the Navier-Stokes equations. Because of the Alfvhn waves, the 
time step had to be reduced from its value in the hydrodynamic code, and to conserve 
computer time (the code requires 6 s  of CDC 7600 time per step), errors induced by 
aliasing interactions were not removed. However, a truncation in wavenumber space 
was effected which eliminates even-order aliasing interactions (Patterson & Orszag 
1971). Tests indicated that these errors were negligible and less than time-stepping 
errors, which were small compared with truncation errors (discussed below). 

Statistical averages for spectra are obtained by summing over spherical shells in 
wavenumber space. A sum over those shells is equivalent to a volume average over the 
cube. 

We define an energy spectrum E ( k ,  t ) ,  an enstrophy spectrum @k,  t )  and a transfer 
spectrum p ( k ,  t )  as follows: 

I =  c. 
k- AkGIk’I < k + A k  

where t^ = - k-Z[k x ( k  x S)] and 9 = i ( k  x 2). By forming moments of (6) and shell 
averaging, we obt,ain 

Summing over all shells, we get 

and similarly for the other 
served, i.e. 

variables. If v = A = 0, the total energy Er + EAl is con- 

Other quadratic invariants (conserved quantities in an inviscid, non-diffusive flow) 
are the magnetic helicity H,(t) and the cross-helicity H,(t), defined below. When the 
magnetic field is absent, the kinetic helicity H,-(t) is an invariant. Here 

44‘~) J j“.‘x t ) ,  ( I l a )  

el&) = x A, (k , t ) ,  ( I I b )  

H& m, t ) ,  ( I l c )  



310 A .  Pouquet and G.  S .  Patterson 

where (ai(k‘, t )  ad( - k’, t ) ,  

In  real space 

and 

Hv(t) = (U. m), 
HM(t) = (b, a), b = curl a, 

&(t) = (u.  b). 

Relative kinetic, magnetic and cross-helicities are defined as 

respectively, and their absolute values are bounded by unity (see Frisch et al. 1976). 
Any helicity is said to be maximal at  a given wavenumber if the corresponding relative 
helicity for that wavenumber is equal to 5 1. 

Pertinent physical and computational parameters of the flow are summarized in 
table 1.  A summary of calculations reported here is given in table 2. (The variable 
$ ( t )  is the ratio of magnetic energy E,,(t) to kinetic energy E,(t).) An algorithm for 
generating helical fields is given in the appendix. 

4. Numerical results 
Growth of the magnetic energy 

In  this study, emphasis is placed upon the nonlinear problem, i.e. when (u2) N (P) ,  
and we shall look at the effect of a magnetic field upon the turbulent characteristics 
of the flow, and vice versa. We started our calculations with a case where the initial 
ratio of magnetic to kinetic energy, denoted by 

1CrW = -@,,(t)/Ev(t), (15) 

was 10-2. For run 1 ( c )  (refer to table 2),  $ ( t )  grows monotonically to a value of 7 by 
t = 1-5, mainly because of the fast equipartition of kinetic and magnetic energies at 
large wavenumbers owing to Alfvkn waves. Similar, but slightly lower, values are 
observed for runs 3 ( b )  and (a).  Almost no magnetic energy is gained in the first shell, 
but the transfer at larger wavenumbers is rapid. In  fact, there is a definite overshoot 
of the magnetic energy for large k, and this is observed in almost all runs which have 
been tried (table 2). Kinetic and magnetic energy spectra for run 1 ( b )  are presented 
in figure 1. 

Even when initially the kinetic and magnetic energy are equal ( $ ( O )  = l), the ratio 
+ ( t )  increases with time. Figure 2 shows this ratio for runs 3(a)-(9). For runs 3(c) 
and (d ) ,  both of which have maximal magnetic helicity initially (y,(k, 0) = l), the 
overshoot of magnetic energy is more important than in the other cases. This can be 
attributed to a strong correlation between the current and the magnetic field (their 
Fourier components are nearly parallel), which noticeably reduces the Lorentz force. 
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PrM = v / A  
V 

k0 

kmax 
kmln = 2r/L 

UO 
At 
Re, ( t  = 0)  
tmax 

magnetic Prandtl number 1 
kinematic viscosity 0.01 
wavenumber of energy peak at t = 0 
minimum wavenumber of calculation 2 
maximum wavenumber of calculation 31 
r.m.6. velocity at t = 0 1 
time increment 0.002 
Reynolds number (based on Taylor microscale) 40 
maximum time 2 0.8 

4.76 

Characteristic times : 
Alfv6n time l/kmxbo 
Dissipation time l/vkiax 
Eddy turnover time l/k,,,uo 

0.03 (if b, = u,) 
0.1 
0.5 

TABLE 1 

l i f 2 < k < 4  - 
0 otherwise N80 -1 { 

- 0.5 N63 - 
N86 - 1 0.5 

1.38 
1.18 
3.25 
3.22 
3.45 

1 

1.16 
2.54 

t All helicities are initially zero unless otherwise specified. 
$ Additional runs with v = 0.02, 0.03 and 0.04 and varying k,,, and At. 
8 Additional run with k, = 6.5. 
7 Additional runs with v = 0 and with aliasing removed. 

TABLE 2 

tmax 

1.5 
1.5 
1.5 

0.s 
0.8 
0.8 

0.8 
0.8 
1-5 
3 
0.8 

0.8 
0.8 

However, the condition of maximal helicity is not conserved by the equations of motion 
(Kraichnan 1973), and soon the almost force-free condition is relaxed. Run 3 ( d )  was 
continued until t = 3 but no saturation appeared, although only 15 yo of the initial 
energy was left. It should be emphasized that the growth of $(t)  does not, in general, 
represent an actual increase in the total magnetic energy above its initial value, but 
only an increase over the total kinetic energy at  that time. In  other words, we cannot 
say that we are dealing with a dynamo because no source of energy is present that 
would keep the total energy steady; nevertheless, the results presented in this paper 
give a clear indication of the mechanisms of energy transfer and the magnitude of 
that transfer when all terms in the equations are retained, and no linearization is 
permitted. 
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k 
FIGURE 1. Kinetic (solid lines) and magnetic (dashed lines) energy spectra 

for run 1 ( b )  at (a)  time t = 0 and (b )  t = 3. 

t 

t 

FIQURE 2. $ ( t )  w.s. time for runs 3 (u)-(g). Two realizations of run 3 ( c )  are shown. 
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0 0.2 0.4 0.6 0-8 1 .o 
I 

FIGURE 3. Kinetic (solid lines) and magnetic (dashed lines) energies and enstrophies 
v8. time for run 3 (c). All quantities are normalized by their initial values. 

The variation of @ with time is linked to the magnetic Reynolds number of the 
flow. By increasing the viscosity (and the magnetic diffusivity since PrM = l ) ,  but 
otherwise keeping the same initial conditions, we can establish the following empirical 
relationship: 

(16) @ N v-0.4. 

The stretching of the magnetic field lines is the cause of the increase in the magnetic 
energy over the kinetic energy in the small scales. With a lower magnetic Reynolds 
number, less stretching, and therefore less growth, occurs. This stretching effect can 
be further seen in figure 3, where the total kinetic enstrophy D,  and its magnetic 
counterpart DM are drawn us. time. The magnetic enstrophy clearly grows more than 
the kinetic enstrophy. The most dramatic increase in DAI occurred in runs 1 ( b )  and ( c ) ,  
where it was over 18 times its initial value. D, increased by a factor of 1.2, which is 
similar to that observed in calculations with the Navier-Stokes equations (see Orszag & 
Patterson 1972). This is expected for a weak magnetic field. 

We can say that, as well as the turbulent transfer of energy to high wavenumbers as 
indicated by Dr7, there is also observed another kind of transfer, due to the Alfvbn 
waves. This type of transfer is particularly strong when the initial value of the residual 
energy (and helicity) is far from zero, as in the series 1 runs. I n  fact, if we define the 
transfer function for the kinetic energy as the sumof contributions from the u x w term 
and the j x b term [ ( 5 ) ,  (7 )  and (9)], i.e. 

(17) T,,(t) = T p ( t )  + T#), 



314 A .  Pouquet and C. 8. Patterson 

0.2 

0. I 

0 

-0.1 

- 0.2 

-0.3 

- 0.4 

- 0.5 

- 0.6 

- 0.7 

- 0.8 

- -0.9 1.0’ L 
FIGURE 4. Kinetic (solid line) and magnetic (dashed line) energy transfer spectra 

at time t = 0.3 for run 3 (a) .  

we find that the transfer term TF(t) due to the Lorentz force is negative. This indicates 
a systematic feeding of kinetic energy into magnetic energy. Transfer spectra are 
shown in figure 4; energy is removed from large-scale eddies and transferred to small- 
scale eddies, presumably by a cascade process. The low Reynolds number of the 
calculation does not allow for any significant inertial range, and we are not able, so far, 
to verify the theoretical prediction of Kraichnan (1965) of a k b  power law for kinetic 
and magnetic energy spectra in MHD turbulence. Figure 5 shows the normalized 
second-order moments of the transfer functions, defined as 

4 7  = #Av/(u. u)13 k’-rfi,,(k, t ) ,  
all k 

with 

and similarly for #af. For the Navier-Stokes equations, Sp7 reduces to the skewness 
factor 

A, = [5(u. u)/{o. w)]4 

and A,. is the Taylor microscale 

These moments are a measure of the departure from Gaussianity, and indicate how 
transfer varies with time at high wavenumbers. They decrease substantially after 
having reached their sharp maximum and before stabilizing. It is possible that this is 
an indication of truncation errors, the energy being reflected back because it cannot 
be dissipated fast enough at  high wavenumbers. Another indication of truncation is 
seen in the magnetic enstrophy spectrum (figure 6). We have checked that the observed 
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0 0.2 0.4 0.6 0.8 
f 

FIGURE 5. Kinetic (solid line) and magnetic (dashed line) skewnesses 
w.9. time for run 3 (a). 

0 3  
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0 I I I I I I I I I I I I I I  

k 
5 9 13 17 21 25 29 

315 

FIQURE 6. Kinetic (solid line) and magnetic (dashed line) enstrophy spectra 
at time t = 0.3 for run 3 (c). 
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0. I 

0 

-0.1 

-0.5 

FIGURE 7. Kinetic (solid line) and magnetic (dashed line) energy transfer spectra 
at  time t = 0.3 for run 3 (c). 

oscillations are due neither to time-differencing errors nor to aliasing errors. A spurious 
effect due to the way statistics are handled might be partly the came, because the 
number of points in each shell does not vary smoothly with k2. However, when the 
viscosity is increased by a factor of four, the oscillations disappear. The kinetic en- 
strophy spectrum does not show these oscillations so markedly, partly because less 
transfer occurs for the kinetic energy than for the magnetic energy a t  high wave- 
numbers. I n  fact, such a non-monotone behaviour of the spectrum is present in Orszag 
& Patterson's calculations (1972, figure 2a).  I n  any case, truncation errors are not so 
important as to cause the energy spectra to peak a t  the high wavenumbers; we were 
also able to  check Reynolds number independence for the large scales. 

Inverse transfer of the magnetic energy 

The transfer spectra of magnetic energy and magnetic helicity behave differently 
when there is initially maximal magnetic helicity in the flow. I n  that case, both 
transfer spectra are positive in the first shell, indicating that an inverse transfer of 
magnetic energy (and magnetic helicity) is occurring towards low wavenumbers, i.e. 
t'he transfer of energy into the large-scale motion of the magnetic field (figures 7 and 8).  
Indeed, in figure 9 the magnetic energy is seen to grow a t  low wavenumbers between 
t = 0.3 and t = 0.8 despite the fact that this is a viscous decay calculation. We should 
note that such positive transfer has already been found in the numerical simulation 
of two-dimensional turbulence, where an inverse cascade of energy towards the large 
scales is expected (Herring et at. 1974). Such inverse transfer was not noted in the 
case ( 3 b )  with maximal kinetic heIicity. In  figures 10 and 11,  we plot the ratios of the 
kinetic and magnetic energy in the first shell (2 ,< k < 4) a t  time t to their initial 
values. I n  figure 10, yrr(k, 0) = 1 and, in figure 11, yar(L,  0) = 1 .  When there is magnetic 
helicity initially, the magnetic energy increases in the large scales. It must be stressed 
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- 0.5 c 
FIGVRE 8. Magnetic helicity transfer spectrum at time t = 0-3 for run 3 (c) .  

k 
FIGURE 9. Kinetic (solid lines) and magnetic (dashed lines) energy spectra for run 3 (c ) .  

(a) Initial spectrum ($ = l) ,  ( b )  t = 0.3, (c) t = 0.8. 

that  it is the large-scale Jluctuating energy which is growing, as there is no mean mag- 
netic field in this problem. However, this result may have important consequences in 
astrophysics, because it demonstrates that turbulence is able to generate, under certain 
conditions, large-scale fluctuating fields such as those observed in the spiral arm of the 
Galaxy, for which AB N B (Parker 1969; Wilkinson & Smith 1976). The fact that no 
inverse transfer is found when only kinetic helicity is available in the flow seems to 
disagree with the results of previous studies of MHD. However, it was noted by 
Moffatt (1 972) that the fastest growing mode of the magnetic field is the one for which 



318 A. Pouquet and G. 8. Patterson 

0 O'* L 0.1 0.5 

I 

FIGURE 10. Normalized kinetic (solid line) and magnetic (dashed line) 
energy in the first shell (k = 3) ws. time for run 3 (b) .  

t 
- 

........ ............ 
/---- 

.... 

............... .......... 
0 1  I '  I I ' '  I ' I ' I I '  I *  

0.1 0.5 1 .o 
1 

FIQURE 11. Normalized kinetic (solid line) and magnetic (dashed line) energy in the first shell 
(k = 3) 'us. time for run 3 (c). The dotted lines represent results for a different realization of the 
same case. 

b is parallel to curl b, i.e. a field which possesses magnetic helicity: Also, in the work 
of LBorat, Frisch & Pouquet (1975), some large-scale magnetic helicity is necessary for 
growth of the large-scale magnetic energy. We therefore made run 3 ( e ) ,  which was 
similar to run 3 ( b )  but with rv = - 1 and the magnetic helicity at a maximal rate 
in the first shell: 

The magnetic energy in the first shell does not decrease nearly as sharply as in the 
run 3 ( b )  (vv = 1,  rnl = 0) although it is not seen to increase as in run 3 ( c )  (qv = 0,  
rM = 1). Also, for this particuIar run 3 ( e ) ,  while the magnetic energy transfer is 
negative in the small wavenumbers, it is about half the value of the kinetic energy 
transfer. One can therefore say that there is some inverse (positive) transfer of magnetic 
energy but insufficient to overcome the usual negative component of transfer of energy 
towards large wavenumbers; the net magnetic energy transfer is still negative. The 
results are not as striking as for'run 3 ( c ) ,  but they do not contradict the previously 
quoted papers as to the role of kinetic helicity in the dynamo problem for there the 
presence of magnetic helicity was also required. 

A shift of the maxima of the initial energy spectra from the second (k ,  = 4.76) shell 
to the third (k ,  = 6.5) shell in a case otherwise identical to run 3 ( c )  yields similar 
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FIGURE 12. Kinetic (solid line) and magnetic (dashed line) energy 
transfer spectra at time t = 0.3 for run 3 (g). 

results. As time increasek , the kinetic energy stops diminishing in all scales except the 
largest and is found to increase again in a tendency towards equipartition. The remark- 
able feature here is that such an increase in the kinetic energy occurs in the second 
shell too, i.e. at  a wavenumber smaller than the maximum of the initial spectrum 
(located in the third shell). 

Cross-helicity 

We finally studied the influence of the third invariant upon the development of the 
flow. The cross-helicity (u . b) measures the correlation between the velocity field and 
the magnetic field. No model of MHD turbulence, to date, has included thip invariant, 
except for the study of the inviscid cttse (v = h = 0) by Frisch et al. (1975). If initially 
the kinetic and magnetic energies are equal and if the cross-helicity is maximal, all 
nonlinear terms are strongly reduced. For a non-maximal rate, it  can therefore be 
expected that all transfers will be weakened. And in run 3(f) ,  where $ ( O )  = 1 and 
8,(L, 0) = 0.5, it  is indeed observed that the dynamics are reduced and slowed down. 
The maxima for the enstrophies occur at a time (tAf = 0.35) later than that when no 
cross-helicity is present (tJl = 0.30), indicating a retardation of turbulent processes. 
Lesser transfer towards small scales is also indicated by a smaller increase in the ratio 
of magnetic to kinetic energy (a factor of 3 less than for the equivalent run without, 
cross-helicity). 

The weakening of turbulence in the presence of cross-helicity is further seen in 
run 3 (g) ,  for which the magnetic helicity is maximal. Again, we find an inverse transfer 
of magnetic energy (figure 12) and of magnetic helicity (figure 13). But the transfers 
are diminished from their values in the equivalent run without cross-helicity (run 3 (c) ;  
compare figures 12 and 13 with figures 7 and 8). Furthermore, the cross-helicity itself 
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FIGURE 13. Cross (solid line) and magnetic (dashed line) helicity transfer spectra 
a t  time t = 0-3 for run 3 (9). 

is transferred to the large scales (figure 13). This inverse transfer indicates that the 
growth of the large-scale magnetic energy (and magnetic helicity) is accompanied by 
an amplification of the correlations between the large scales of the magnetic field and 
the velocity field. 

Therefore, in the calculations presented in this paper, magnetic helicity appears to be 
the fundamental ingredient for the dynamo problem. We are not quite sure how these 
results would apply to the anisotrophic case. Indeed, in the presence of a mean magnetic 
field, the magnetic helicity invariant disappears and this is likely to have a direct 
influence on the dynamics of the flow. 

5. Conclusion 
This paper gives the results of a numerical simulation of isotropic but helical, 

homogeneous, incompressible, decaying, MHD turbulence at a magnetic Prandtl 
number of unity. The wavenumber range is approximately 15 (yielding a microscale 
Reynolds number of the order of 40)) and the nonlinear terms are fully taken into 
account in the calculation. Statistical properties of the flow, such as non-mirror 
symmetry, can be included in the initial conditions. A net transfer of energy into the 
magnetic mode is seen to take place, first at  high wavenumbers; this is attributed 
mainly to the equipartition action of the Alfv6n waves. This transfer is more pro- 
nounced when there is helicity in the flow. In  particular, when initially the magnetic 
helicity is maximal, an inverse transfer of magnetic energy and magnetic helicity is 
observed, feeding (over several eddy turnover times) the largest available scales of 
the flow. This inverse cascade of turbulent magnetic energy towards the large scales 
may possibly be relevant to the existence of large-scale magnetic fluctuations of the 
order of the mean field in our gaIaxy. Although the ultimate fate of the magnetic seed 
cannot be deduced from the computation because no source of energy is included, 
what appears clearly is that the nonlinear terms change the velocity field but do not 
diminish to a great extent the magnetic transfer term. These terms slow the growth 
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and eventually saturate it, but they do not eliminate it. A change in the value of the 
magnetic Prandtl number by an order of magnitude would modify the picture presented 
in this paper. However the computer code used does not permit the simulation of 
the wide range of scales that  would be necessary. 

Finally, it should be stressed that the numerical simulations are necessary for the 
validation of the closure models of turbulence, and are good tools, for that matter, as 
laboratory materials with a magnetic Prandtl number of unity do not exist. These 
closure models deal with equations bearing a structural relationship to the actual 
equations of MHD. They can be integrated numerically at high Reynolds number 
and they can be used with different values of the magnetic Prandtl number. Moreover, 
a detailed study of the dynamics of MHD is feasible in the framework of the models. In 
the absence of laboratory experiments at a magnetic Reynolds number of order one, 
there seems to  be a need for numerical simulations of MHD turbulence in order to 
check the closure models against such calculations. 

A. Pouquet wishes to thank NCAR for its generous hospitality. NCAR is sponsored 
by the National Science Foundation. 

Appendix. Generation of initial velocity fields 

isotropic energy spectrum of the form 
The initial flow is chosen from a random Gaussian ensemble with a prescribed 

B,(k, 0) N ~ e x p  - 2(k/ko)2] 

with k, = 4(2)* 4-76. B,(k,t) is the kinetic energy in a spherical shell centred at 
wavenumber k and of thickness 2Ak = kmin = 2. Wavenumber space is restricted 
to  a sphere that is partitioned into fifteen shells, and spectra are obtained by summing 
over all points within a shell. Statistical fluctuations are proportional to the number 
of points in a given shell, and are greater for the smaller wavenumbers. However, for 
some spectra, integral constraints imposed by conservation laws reduce these fluctua- 
tions. Statistical variations between two different realizations of the same flow are 
not significant. The total kinetic energy 

(u.u) = E,(O) = &(k, t )  
all k 

is taken to be 3. The magnetic field is chosen similarly, with E,(O) = $ ( O )  Ev(0) and 
$ ( O )  specified as 10-2, 0.2 or I. 

The algorithm used to generate an initial random velocity field with a given kinetic 
helicity is as follows: 

(a )  Generate two random complex 3-vectors a(1) and which are normally distri- 
buted and all of whose components are independent, i.e. 

where a = 1 or 2, i,j = 1 , 2  or 3, the asterisk denotes complex conjugation and angle 
brackets denote an ensemble average. 

(q?') 2 0, (qp'qf'"') = 2&, (A 1) 

( b )  Generate two solenoidal complex 3-vectors with adjustable amplitude C: 

W = iC(n)  (n x &a)), (A 2) 
where n = k/(27r/L) and n = In[. 
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(c) Correlate the two solenoidal complex 3-vectors$ 

[ W] = [ cos B sin 81 [ V)] 
sin8cos8 W) * 

( d )  Form a solenoidal, random, complex 3-vector with given helicity: 

Then the relative kinetic helicity is:? 

qv(k, 0) = (G .&*)/(a .G*)l) (0. 0*)4 = sin 28, (A 6) 

where S(n) is the number of points in she1 n. Thus specifying yv(k, 0) and &(k, 0) 
determines the adjustable constants @and C for use in (A 1 )-(A 4). A similar aIgorithm 
is used for generating fields with a given magnetic helicity or cross-heIicity. 

f Acknowledgement is made to S. A. Orszag for suggesting this technique. 
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